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Abstract

A wave model to predict the vibrational response of a pneumatic tyre subject to line force excitation is
presented. The tread and sidewalls are each modelled as thin, flat orthotropic plates with in-plane tension,
which are joined together by a translational stiffness, and to a rigid rim. The dynamic response of the tyre
to harmonic excitation is decomposed into spatial harmonics around the circumference, and waves in the
meridional direction. At low frequencies (o100Hz), the response is stiffness-like, and is controlled by
the sidewall properties and tension effects resulting from the tyre pressure. In the mid-frequency range
(100–500Hz), a resonant response is observed, associated with modes both across and around the tyre. At
high frequencies (>500Hz), the response tends towards that of an infinite orthotropic plate. Experiments
have been conducted on an inflated tyre fitted to a wheel rim to confirm the theoretical findings. The results
show reasonable agreement with the predictions, the model accurately reflecting the phenomenological
behaviour.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Vehicle noise is becoming of increasing concern and tyre noise is a major contribution to this
[1]. There is consequently a need to model the vibrational behaviour of the tyre, so that the
resultant noise radiation can be predicted and the tyre subsequently redesigned to reduce the
noise.
A number of previous studies have addressed this problem. Finite element (FE) methods have

been used to predict the vibrational response of tyres, for example [2]. However, because the
wavelengths of bending waves in the tread and sidewall are so short at frequencies greater than
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about 500Hz, the size of the FE model is large, and it is prohibitively expensive to use FE
methods. Tyre noise is significant at frequencies up to several kHz, and it is this which provides
the motivation for alternative modelling methods and, in particular, wave methods. Kropp [3]
developed a model based on a simple ring to predict the tread vibration; Pinnington and Briscoe
[4] modelled the tread as an infinite, tensioned Timshenko beam on a sidewall impedance,
allowing for both one-dimensional travelling waves and higher order travelling modes with an
integral number of half-wavelengths across the tread. Bolton et al. [5] also suggest a
decomposition of the tyre response into propagation in the circumferential direction considered
together with the existence of higher order modes across the tyre. In all these works, whilst the
problem is treated as two dimensional, in essence one-dimensional wave propagation is considered
in the circumferential direction.
This paper provides an approach to the modelling of high-frequency tyre vibrations which

differs from previous approaches. A wave model of the dynamics of a tyre is presented in which
the flexural wave response is described by two-dimensional wave equations. Here, however, the
primary propagation direction is considered to be across the tyre, whilst variation in the
circumferential direction is accounted for by decomposing the response into harmonic
components around the tyre. The method adopted to solve the equations of motion is an
extension of that proposed by Mace for beams [6], in which both propagating and nearfield wave
types are taken into account.
Finally, some experimental work is presented and results compared with those of the theoretical

model.

2. Wave model of a tyre

2.1. The two-plate tread/sidewall system

The system is modelled as an idealization of a tyre. The tread and sidewalls are each modelled
as a thin, flat orthotropic plate, with in-plane tension, which arises as a result of the internal
pressure in the tyre. Tread curvature is ignored so that the tyre is effectively ‘‘unwrapped’’
circumferentially, and continuity of displacement and slope is applied at the ends to reflect the fact
that they are, in fact, joined. This is shown in Fig. 1. The plates are assumed to vibrate in bending
and in-plane motion is neglected. To represent the longitudinal stiffness of the sidewall, it is joined
to the tread via a translational stiffness as shown in Fig. 2, with continuity of slope being
preserved between the two tyre elements. The stiffness arises primarily from the curvature induced
by the internal pressure and also from a combination of axial stretching, bending and shear
deformation. This is described in more detail in Appendix A where an expression for the sidewall
stiffness is derived. The sidewall is connected to the rim by a simple support, which is assumed to
be rigid. In this paper, the tyre is assumed to be symmetrical about the centreline, and hence only
one-half need to be modelled in detail, with the slope being zero at the tread centreline. Whilst this
is a simplification, it is intended to capture many of the salient features of the dynamic behaviour
of the tyre. The method can be extended straightforwardly to excitation which is not applied along
the centreline, by dividing into symmetric and asymmetric parts, and treating each separately.
Excitation is a constant line force applied along a short length of the centreline of the tyre. Again,
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the method can be extended to cope with excitation which is distributed across the tread; this is
not so straightforward, and is the subject of current work.
A wave approach is used to model the behaviour of the system, and the dynamic response is

found by summing contributions from a number of wave components. Waves are injected into the
system by the force and travel through it, being reflected and transmitted at the joint between the
tread and the sidewall, and again being reflected at the sidewall/rim joint. The model is developed
in detail in the following sub-sections.

2.2. The equations of motion and wavenumber solutions

The transverse displacement w(x; y; t) in both the tread and sidewall satisfies the plate
equation [7]

Dxx

@4w

@x4
þ Dyy

@4w

@y4
þ 2D3

@4w

@x2@y2
� Tx

@2w

@x2
� Ty

@2w

@y2
¼ �rh

@2w

@t2
; ð1Þ

where Dxx; Dyy and D3 are the plate bending stiffnesses, Tx and Ty are the x-wise and y-wise
tensions, respectively, and r and h are the plate density and thickness, respectively. The bending
stiffnesses are given by

Dxx ¼ Exð1þ iZÞh3=12ð1� nxynyxÞ; Dyy ¼ Eyð1þ iZÞh3=12ð1� nxynyxÞ
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and

D3 ¼ Dxy þ 2D66;

where

Dxy ¼ nyxDx ¼ nxyDy; D66 ¼
Gxyð1þ iZÞh3

12
:

Ex and Ey are the elastic moduli in the x and y directions, respectively; Gxy is the shear modulus in
the x � y plane; nxy and nyx are the Poisson’s ratios, and Z is the loss factor. The material
properties of the tread are, of course, different from those of the sidewall.
The internal shear forces Sx and Sy are given by

Sx ¼ Tx
@w

@x
� Dxx

@3w

@x3
� D3

@3w

@x @y2
;

Sy ¼ Ty

@w

@y
� Dyy
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ð2Þ
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and the bending moments Mx and My and twisting moment Mxy are given by

Mx ¼ �Dxx

@2w

@x2
� Dxy

@2w

@y2
;

My ¼ �Dyy
@2w

@y2
� Dxy

@2w

@x2
;

Mxy ¼ �2D66
@2w

@x @y
: ð3Þ

It is assumed that the only tensions acting on each plate are Tx and Ty; and that no additional
shear component exists.
All quantities are assumed to vary time harmonically at a frequency o; and the explicit time

dependence eiot is suppressed for clarity.
Because the plates are continuous in the y direction, the response can be decomposed into

spatial harmonic components in the y direction, with the nth component in this direction having a
trace wavenumber kn. This is equivalent to decomposing the response around the circumference of
the tyre into a Fourier series. The displacement, w(x,y), can therefore be written as

wðx; yÞ ¼
XN
n¼0

WnðxÞ cos kny; ð4Þ

where the y-component wavenumbers are

kn ¼
2np

l
; ð5Þ

where n is an integer and where l is the circumference of the tyre.
Eq. (4) is then substituted into Eqs. (1)–(3), and, since the trace wavenumber components are

independent because the system is uniform in the y direction, each component can be analyzed
independently. The total response can be found by summing over all n.
From the equation of motion, Eq. (1), it can be shown that, in the absence of applied forces,

wave motion of the form

WnðxÞ ¼ aþ
P;ne

�ikð1Þ
x;nx þ a�P;ne

ik
ð1Þ
x;nx þ aþN;ne

�k
ð2Þ
x;nx þ a�

N;ne
k
ð2Þ
x;nx ð6Þ

occurs for the nth wave component in each plate, where an are the wave amplitudes, and the
wavenumbers, kx,n, are given by
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The square roots are evaluated such that Imfkxgp0 and RefkxgX0 if Imfkxg ¼ 0: The form of
the x-dependence in Eq. (6) has been chosen such that both k(1) and k(2) are predominantly real in
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the cases of most practical importance. The amplitudes a7N;n represent evanescent or nearfield waves,
while a7

P;n represent waves which propagate freely at high enough frequency, or low enough n.
If the plate is isotropic rather than orthotropic, such that Dxx ¼ Dyy ¼ D3 ¼ D; and if the

in-plane tensions Tx and Ty are zero, Eqs. (7) and (8) reduce to the familiar wavenumber
equations for bending of an isotropic, thin plate, namely

kð1Þ
x;n ¼ ðk2

f � k2
nÞ
1=2; kð2Þ

x;n ¼ ðk2
f þ k2

nÞ
1=2; ð9a;bÞ

where kf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rho2=D

p
is the free bending wavenumber in the plate.

For non-zero damping, the bending stiffnesses in Eqs. (7) and (8) are complex, and
consequently so, too, are the wavenumbers kx. For small damping, kð2Þ

x;n is typically large and
predominantly real, and therefore represents nearfield waves, significant only at and around the
excitation point and plate boundaries. For high enough frequency, the wavenumber kð1Þ

x;n is
predominantly real and represents a true wave motion which can propagate energy over
significant distances. Below a particular cut-off frequency, however, kð1Þ

x;n becomes predominantly
imaginary, and the corresponding waves become similar to nearfield waves.

2.3. The wave model

2.3.1. Wave propagation
For each circumferential order n, waves can propagate in the tread and sidewall in both positive

and negative x directions. At some point in the system, the vector of positive-going wave
amplitudes can be written as

aþn ¼
aþ

P;n

aþN;n

" #
: ð10Þ

After propagation over a distance lx, the wave amplitudes become Sna
þ
n where

Sn ¼
e�ik

ð1Þ
x;nlx 0

0 e�k
ð2Þ
x;nlx

" #
ð11Þ

is the propagation matrix for the nth trace wavenumber component. Similar expressions hold for
the propagation of negative-going waves. These propagation relations can be used to relate wave
amplitudes at various positions within the coupled system.

2.3.2. Wave transmission and reflection
When waves are incident at the discontinuity between the tread and sidewall plates, reflected

and transmitted waves will be produced. Similarly, waves incident on the sidewall/rim joint will be
reflected. With reference to Fig. 3, the wave amplitudes at a joint are related by

bþn ¼ Tab;na
þ
n þ Rbb;nb

�
n ; a�n ¼ Raa;na

þ
n þ Tba;nb

�
n ; ð12a;bÞ

where R,n and T,n are reflection and transmission matrices for the nth trace wavenumber
component at the joint. Because the tread/sidewall junction is uniform, incident waves of a given
trace wavenumber produce only reflected and transmitted waves with that same trace
wavenumber.
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The reflection and transmission matrices for the tread/sidewall junction, shown in Fig. 4a, and
the sidewall/rim joint (Fig. 4b) can be found by considering continuity and equilibrium at that
junction. Given the assumptions described in Section 2.1, continuity at the junction implies

wsð Þ0¼ 0; ð13Þ

@wt

@xt

� �
lt

¼
@ws

@xs

� �
0

; ð14Þ

KsðwtÞlt ¼ �ðSx;tÞlt ; ð15Þ

ðMx;tÞlt ¼ ðMx;sÞ0; ð16Þ

where the subscripts t and s refer to the tread and sidewall, respectively, and quantities are
evaluated at the joint.
For the sidewall/rim joint shown in Fig. 4b, the boundary conditions are

ðwsÞls ¼ 0; ð17Þ

ðMx;sÞls ¼ 0: ð18Þ

From these relationships, the reflection and transmission matrices can be calculated for each
trace wavenumber component separately.

ARTICLE IN PRESS

w t

ws

K

S M

M

x,t x,t

x,s

s

tread

sidewall

(a) 

ws

Mx,s

sidewall

rim

(b) 

Fig. 4. Displacements, forces and moments at the joint: (a) tread/sidewall joint and (b) sidewall/rim.

a

a b

+

- -

b+
n

nn

n

Fig. 3. Wave reflection and transmission at a joint.

J.M. Muggleton et al. / Journal of Sound and Vibration 264 (2003) 929–950 935



2.3.3. Excitation

At the excitation point on the tread, a uniform force, Q, is applied along a length d at the tyre
centreline. This force can be decomposed into harmonic components of force per unit length
around the circumference of the tyre, Fn, such that

Q

d
¼

F0

2
þ

XN
n¼1

Fn cos kny; ð19Þ

where Fn is given by

Fn ¼
2

l

Z d=2

�d=2

Q

d
cos kny dy ¼

2Q

l

sinðknd=2Þ
ðknd=2Þ

: ð20Þ

Waves are generated by the force, and, considering continuity and equilibrium at the excitation
point, the vector of wave amplitudes generated for the nth trace wavenumber, qþn can be found.
Continuity and symmetry at the input give

ðwtÞ0RHS
¼ ðwtÞ0LHS

; ð21Þ

@wt

@x

� �
0RHS

¼
@wt

@x

� �
0LHS

¼ 0: ð22Þ

Equilibrium and symmetry at the input give

ðSx;tÞ0RHS
þ ðSx;tÞ0LHS

¼ Fn; ð23Þ

ðMx;tÞ0RHS
þ ðMx;tÞ0LHS

¼ 0: ð24Þ

The nth trace wavenumber, qþn is then given by

qþn ¼
qþ

P;n

qþN;n

" #
; ð25Þ

where

qþP;n ¼
iFn

2Dxxk
ð1Þ
x;nððk

ð1Þ
x;nÞ2 þ ðkð2Þ

x;nÞ2Þ
and qþ

N;n ¼
iFn

2Dxxk
ð2Þ
x;nððk

ð1Þ
x;nÞ2 þ ðkð2Þ

x;nÞ2Þ
ð26a;bÞ

2.3.4. Assembly of wave amplitude equations

Fig. 2 shows the system with vectors of positive- and negative-going wave amplitudes for the
nth trace wavenumber component marked at various locations. The locations are chosen so that
all waves propagate into the plates from the points at which they are defined, and hence decay as
they do so. This ensures that the resulting system of matrices is well conditioned. Propagation,
reflection, transmission and excitation equations can be written systematically to relate the wave
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amplitudes at the various locations. In matrix form, these equations can be assembled to give

I �St;n 0 0

�Rtt;nSt;n I 0 �Tst;nSs;n

�Tts;nSt;n 0 I �Rss;nSs;n

0 0 �Rsr;nSs;n I

2
6664

3
7775

aþn

a�n

bþn

b�n

2
6664

3
7775 ¼

qþn

0

0

0

2
6664

3
7775; ð27Þ

where R and T are reflection and transmission matrices at the tread/sidewall (t/s) coupling and the
sidewall/rim (s/r) joint, St and Ss are propagation matrices for waves in the tread travelling a
distance lt, and waves in the sidewall travelling a distance ls, respectively, and I and 0 are 2� 2
identity and null matrices, respectively. This set of equations can be solved in a straightforward
manner to determine the wave amplitudes.
Having found the various wave amplitudes, the response at any point on the tyre surface can be

found by evaluating Eq. (6) for each trace wavenumber component, and then summing over all
trace wavenumber components as in Eq. (4).

2.4. Numerical results

In this section, various numerical results are presented. The material and geometric properties
used were estimated from raw data for each component layer of the tyre supplied by the tyre
manufacturer (see Appendix B) using the method described by Hearmon [7] for determining the
bending properties of sheet materials, and are shown in Table 1. The tread and sidewall in-plane
tensions were calculated as a function of internal tyre pressure, as described in Appendix C. For
each case presented, 150 circumferential modes were included in the calculations. The number of
modes required to ensure convergence increases with increasing frequency. Including 150 modes
ensured convergence to within 0.1% to above 2 kHz.
Fig. 5 shows the magnitude of the input mobility for a tyre pressurized to 2 bar. At low

frequencies (below the first peak at around 80Hz), the response is stiffness controlled. The peak
at around 80Hz is associated with a ‘‘tread bounce’’ motion, in which the tread moves
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Table 1

Material and geometric properties of the tyre (SI units)

Quantity Notation Tread Sidewall

Young’s modulus Ex 8� 107 9� 107

Young’s modulus Ey 3� 107 4� 106

The Poisson ratio nxy 0.42 0.38

The Poisson ratio nyx 0.36 0.32

Shear modulus Gxy 6� 106 3� 106

Loss factor Z 0.15 0.15

x-wise length (half-length for tread) lt; ls 0.1 0.08

Thickness h 0.016 0.01

Density r 1.2� 103 1.2� 103

Tyre circumference l 1.9 —

Sidewall half-angle y — 30

Length over which force applied d 0.05 —
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predominantly as a rigid mass on the sidewall spring. The group of resonances seen immediately
above this first peak are associated with higher order circumferential modes with this same basic
x-wise motion. At around 400Hz, another x-wise set of modes cut on with its own group of
resonances (not as clearly seen). Further groups of circumferential modes cut on at higher
frequencies, most notably at around 850Hz, and then again at just below 2kHz. Associated with
each is some characteristic x-wise motion. However, due to the high damping, individual
resonance peaks cannot be clearly seen. As the frequency increases, the response first tends
towards the point response of an infinite orthotropic plate whose properties equal those of the
tread, the input mobility, M, being [8]

M ¼
1

8ðr2h2DxxDyyÞ
1=4

: ð28Þ

At higher frequencies still, the non-zero excitation length effectively filters out the high order
circumferential modes, for which n > l=d; and the response falls below this value.
Fig. 6 shows the point mobility for the zeroth order (n ¼ 0) circumferential mode alone, for

which there is a uniform response around the circumference of the tyre. Here, the resonances
correspond to the cut-on frequencies for the x-wise modes and can be more clearly seen. Fig. 7
shows the effect of reducing the excitation length, which results in the high-frequency response
falling less below the infinite plate response. In general, approximately l=2d (E19) circumferential
wave components are strongly excited, i.e., those for which the excitation length, d, is less than
half the circumferential wavelength. Hence the n ¼ 0 contribution is typically an order of
magnitude less than the total response.
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Fig. 8 shows the two effects of reducing the internal pressure within the tyre. Firstly, the
sidewall stiffness is decreased, and secondly the in-plane tensions in both the tread and sidewall
are decreased. From the figure, it can be seen that decreasing the pressure increases the response at
low frequencies and decreases the frequency of the first ‘‘tread bounce’’ resonance and of
subsequent resonance peaks. The magnitudes of the resonance peaks are seen to decrease with
decreasing tyre pressure, suggesting that they are controlled by in-plane tension effects in that the
damping decreases as the pressure increases. However, the average magnitude of the response at
these frequencies is largely unchanged. At higher frequencies, when the resonances associated with
circumferential modes overlap due to the high damping, individual resonances cannot be observed
and in-plane tension effects have very little influence on the overall response. In the limit, the point
response of an infinite orthotropic plate under in-plane tension is independent of the tension [9].

3. Experimental work

3.1. Experimental set-up and procedure

In order to confirm the theoretical findings, some experimental measurements were made on a
treadless tyre. The tyre was mounted on a steel hub which was then firmly bolted to a large frame,
as shown in Fig. 9a. The tyre was excited radially by an electrodynamic shaker via a small
plywood block (50mm length� 10mm width, which could be considered rigid within the
frequency range of interest) aligned circumferentially on the centreline of the tyre. Full contact
between the block and the tyre was enabled using a cement filler. The block was instrumented with
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a force gauge and two accelerometers, as shown in Fig. 9b. The tyre was excited with a stepped
sine input from 10Hz to 2 kHz at 2Hz intervals, and the input mobility determined. This was
calculated from the average of the two accelerometer outputs at each frequency, although
differences between the accelerometer outputs were found to be minimal, indicating that the
measurement block did not, in fact, rotate. In calculating the mobility, the masses of the block and
instrumentation were accounted for. Measurements were made with the tyre unpressurized, and
then at pressures of 1 and 2 bar. Transfer mobility measurements were also made at two locations
on the tyre: on the tread at the far side of the tyre, diametrically opposite the excitation point, and
midway along the sidewall, in line with the excitation point.

3.2. Results and comparison with theoretical predictions

Figs. 10a–c show the measured and predicted input mobilities at three different tyre pressures.
In general, the measured and predicted data exhibit the same overall trends, with the low-
frequency, stiffness-controlled region, the mid-frequency resonance groups, and the
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high-frequency tendency towards plate-like behaviour. In addition, the frequencies at which the
various cut-on phenomena occur are well reproduced. However, the theoretical model
consistently overestimates the magnitude of the response, particularly at low frequencies and
for low tyre pressures. Furthermore, the circumferential resonances are slightly more closely
spaced in the predictions than in the measured data, suggesting that the circumferential wavespeed
has been slightly underestimated. These observations can both, in part, be attributed to the fact
that the model assumes the plates are flat, ignoring curvature around the circumference. Inclusion
of the curvature would significantly stiffen the tyre at low frequencies, thus reducing the response,
and increasing the circumferential wavespeed. This idea is supported by the observation that the
low-frequency agreement between the measurements and predictions is improved for higher tyre
pressures, when the in-plane tension effects will be larger compared with the effects of curvature.
Another source of error is associated with the difficulty in accurately estimating the elastic
properties of the tyre, which are also likely to be frequency dependent. The method adopted here,
described by Hearmon [7], is relatively simplistic, and was used only to ascertain orders of
magnitude for the various constants. Finally, the low-frequency tread/sidewall description is
simplistic: the constraining effect of the sidewall will be stiffer at lower frequencies than at higher
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frequencies due to shear in the sidewall (e.g. one-quarter of the way around the circumference),
rotational constraints, etc. This simplistic model would be expected to be least accurate
below the first mode group, as is observed. At such frequencies, however, FE techniques
are satisfactory. Furthermore, a resonance of the support structure can be observed around
20Hz.
Figs. 11 and 12 show the magnitudes of the measured and predicted transfer mobilities at

the point on the tread diametrically opposite the excitation point, and mid-way along the
sidewall in line with the excitation, respectively. In general, the agreement is good with the
observed qualitative features in the measured data being reproduced by the predictions.
Comparing the transfer measurements with the corresponding point measurement (Fig. 10c), it
can be seen that, as expected, the magnitudes of the transfer responses are less than that of the
input mobility. This is due to the waves being significantly attenuated due to damping. This is
particularly evident in Fig. 11 for the waves running round the circumference of the tyre. For the
sidewall measurement, shown in Fig. 12, unlike the other measurements, the theory tends to
underestimate the response. This can be attributed to the relatively crude sidewall model in which
the sidewall stiffness is concentrated in the spring at the tread/sidewall junction, rather than
distributed along its length.

4. Discussion and conclusions

A simple wave model has been developed to predict the dynamic response of a pneumatic tyre
to a line force excitation, aligned circumferentially along the midline of the tyre.
The model predicts that, at low frequencies, below the first resonance, the response is stiffness-

like, the stiffness being controlled by the sidewall properties and tension effects resulting from the
tyre pressure. The first resonance is associated with ‘‘tread bounce’’, in which the tread moves
predominantly as a rigid mass on the sidewall stiffness. Then there follows a set of resonances
associated with higher order circumferential modes with the same basic cross-wise motion. At
higher frequencies, further groups of circumferential resonances cut on, each with its own
characteristic cross-wise response. At high frequencies, the response tends towards that of a point-
excited infinite orthotropic plate, limited by the finite length of the excitation line. Changes in
internal tyre pressure affect the response at low frequencies as a result of altering the in-plane
tensions and the sidewall stiffness. The high-frequency response is largely unaffected by tyre
pressure.
Experimental measurements have been made on a treadless tyre in order to confirm the

theoretical findings. The results show good agreement for both point and transfer measurements,
particularly given the uncertainty over the values for the elastic properties used in the model, with
the model accurately reflecting the phenomenological behaviour.
The model is relatively simple, and predicts behaviour in a manner which is easy to interpret.

However, it is capable of being extended to be more realistic. Obvious enhancements are the
inclusion of the effects of in-plane motion and curvature, improvements to the description of the
tread/sidewall junction, and the inclusion of non-uniform properties such as thickness and layer
construction. The incorporation of a non-rigid rim into the model is a further possibility. These
potential developments are the subject of current and future work.

ARTICLE IN PRESS

J.M. Muggleton et al. / Journal of Sound and Vibration 264 (2003) 929–950944



Acknowledgements

The authors gratefully acknowledge the UK and Korea Science and Technology Fund for their
financial support of this work, and Kumho Rubber for providing the tyres and material data.

Appendix A. Determination of sidewall stiffness

In this appendix, an approximate expression is derived for the effective longitudinal stiffness of
the sidewall. For modelling purposes, this stiffness is assumed to be discrete and acts at the end of
the sidewall which is coupled to the tread, as shown in Fig. 1. In reality, the stiffness is distributed
along the length of the sidewall, and arises from a number of possible sources, including axial
stretching, bending and shear deformation associated with the sidewall curvature, and pressure/
in-plane tension effects. The stiffness due to each of these effects is considered in turn and then
combined into a resultant overall stiffness. The sidewall is modelled as a circular arc of radius R,
angle 2y0; with in-plane tension T, along the length of the sidewall, subjected to a force, P, in the x
direction as shown in Fig. 13. The aim is to find the total extension, x, of the end B, the stiffness
then being @P=@x: It is assumed that the curvature is small.

A.1. Axial stretching

With reference to Fig. 13, the axial force, XP

XP ¼ P cos y: ðA:1Þ
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Neglecting Poisson’s ratio effects, using the principle of virtual work [10], the x-wise
displacement due to stretching, uX is given by

uX ¼
Z

@XP

@P

XP

ExA
ds; ðA:2Þ

where Ex is the x-wise elastic modulus, and A is the cross-sectional area of the sidewall.
Integration is performed along the sidewall arc, s, over its entire length.
Substituting for XP from Eq. (A.1) leads to

uX ¼
PR

2ExA
ð2y0 þ sin 2y0Þ: ðA:3Þ

A.2. Bending effects

With reference to Fig. 13, the bending moment at any angle, y, due to an axial force P in the x

direction is given by

MP ¼ PRðcos y� cos y0Þ: ðA:4Þ

Using the principle of virtual work, the displacement, uB, in the x direction due to this force P is
given by

uB ¼
Z

@MP

@P

MP

EI
ds; ðA:5Þ

where s is along the arc of the sidewall. Hence

uB ¼
PR3

2EI
4y0 þ 2y0 cos 2y0 � 3 sin 2y0ð Þ: ðA:6Þ

A.3. Shear effects

With reference to Fig. 13, the shear force, SP, at any angle y, due to the applied force P is given
by

SP ¼ P sin y: ðA:7Þ

Following the same procedure, the displacement produced by shearing action is

uS ¼
PR

2GA
2y0 � sin 2y0ð Þ; ðA:8Þ

where G is the shear modulus of the sidewall.

A.4. Pressure/in-plane tension effects

This component of the stiffness arises from the fact that, as an axial force, P, is applied to the
sidewall, which thus displaces laterally, work is done against the internal pressure; the length of
the sidewall remains the same, but its curvature changes.
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The tension, Tx, in the sidewall, is related to the axial force applied, P, via

P ¼ Tx cos y0 ðA:9Þ

and to the internal pressure, p, by

Tx ¼ pR: ðA:10Þ

The length, x, in the x direction, of the sidewall is given by

x ¼ 2R sin y0: ðA:11Þ

The axial stiffness, Kp, is defined as

Kp ¼
@P

@x
: ðA:12Þ

which, from Eqs. (A.9)–(A.11) is found to be given by

Kp ¼
p

2

cos y0 þ y0 sin y0ð Þ
sin y0 � y0 cos y0ð Þ

: ðA:13Þ

A.5. Combination of effects

Having found the contribution to the sidewall stiffness from the various components above
(axial stretching, bending and shear deformation, and pressure/in-plane tension effects), the total
sidewall stiffness can now be determined. The displacements due to axial stretching, and bending
and shear deformations can be added, so that the component stiffnesses are added in series. The
in-plane tension effects effectively constrain the motion, so this stiffness is then added in parallel.
This gives the total sidewall stiffness Ks as

Ks ¼ Kp þ
P

uX þ uB þ uS

: ðA:14Þ

The two stiffness components are plotted in Fig. 14 as a function of internal tyre pressure for
the tyre properties given in Table 1. It is found that the pressure-independent component (the last
term in Eq. (A.14)) is dominated by the bending contribution, with the shear deformation and
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axial stretching effects not being significant. From the figure, it can be seen that, for low tyre
pressures, the sidewall stiffness is dominated by bending effects; at high tyre pressures, the
stiffness is dominated by pressure/in-plane tension effects. This finding is in accordance with
Pinnington [11] who has derived similar expressions for tyre sidewall stiffness.

Appendix B

Material and geometric properties of the tyre are given in Tables 2 and 3.

Appendix C. Estimation of in-plane tensions due to internal pressure

In this appendix, approximate expressions are derived which relate the tensions in the tread and
sidewall in the x and y directions to the internal pressure in the tyre. Fig. 15 depicts sectional views
of the tyre.
With reference to Fig. 15(a), the x-wise tension in the sidewall can be found by assuming that

the sidewall approximates a circular arc of radius R. The tension in the sidewall, Tsx, is then
related to the internal pressure by

TsxEpR: ðC:1Þ
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Table 2

Tread layout and layer properties

Layera,b Average layer thickness (m) Ex (N/m2) Ey (N/m
2) Gxy (N/m

2) nxy
c

Tread 13.0� 10�3 4.34� 106 4.34� 106 1.45� 106 0.5

Belt 3.0� 10�3 2.07� 107 1.62� 108 1.87� 107 0.0

Ply 1.5� 10�3 5.47� 108 8.07� 106 1.63� 107 0.38

Inner 1.5� 10�3 4.14� 106 4.14� 106 1.38� 106 0.5

aThe layers are listed in order from the outer surface of the tyre inwards.
b It is assumed that the neutral axis of each section lies along the geometric centre line.
cnxy is calculated from nyx ¼ nxyðEy=ExÞ:

Table 3

Sidewall layout and layer properties

Layera,b Average layer thickness (m) Ex (N/m2) Ey (N/m
2) Gxy (N/m

2) nxy
c

Sidewall 5.0� 10�3 3.93� 106 3.93� 106 1.31� 106 0.5

Ply 1.0� 10�3 5.47� 108 8.07� 106 1.63� 107 0.38

Apex 3.0� 10�3 1.19� 107 1.19� 107 3.95� 106 0.5

Ply 1.0� 10�3 5.47� 108 8.07� 106 1.63� 107 0.38

Inner 1.5� 10�3 4.14� 106 4.14� 106 1.38� 106 0.5

aThe layers are listed in order from the outer surface of the tyre inwards.
b It is assumed that the neutral axis of each section lies along the geometric centre line.
cnxy is calculated from nyx ¼ nxyðEy=ExÞ:
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The x-wise tension in the tread, Ttx, can be found by taking moments about the rim at A
TtxlSE

R lS
0 pr dr; where r is measured radially outwards from the wheel rim, giving

TtxE
plS

2
: ðC:2Þ

This ignores any lateral reaction of the rim on the sidewall.
Assuming that most of the circumferential load is taken by the tread, the tread tension in the y

direction, Tty, from Fig. 15(b) is given by

TtyEplS: ðC:3Þ

Finally, the sidewall tension in the y direction, Tsy, is found by assuming that it is
approximately equal to the sidewall tension in the x direction, giving

TsyEpR: ðC:4Þ
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